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Dichotomies for Linear Impulsive Differential 
Equations with Variable Structure 
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The notions of ordinary and exponential dichotomy for linear impulsive differential 
equations are made precise. 

1. IN'rRODUCTION 

Impulsive differential equations (Lakshmikantham and Liu, 1989, and 
to appear; Lakshmikantham et al., 1989; Milev and Bainov, to appear-a,b; 
Samoilenko and Perestyuk, 1987) are a comparatively new branch of  ordin- 
ary differential equations. Interest in them has grown recently in relation 
to the possibility of their application to various branches of science and 
technology: the theory of automatic control, quantum mechanics, impulse 
technology, industrial robotics, ecology, and biotechnologies. 

In the present paper the ordinary and exponential dichotomies for linear 
differential equations with variable structure and impulses at fixed moments 
are investigated. 

2. P R E L I M I N A R Y  NOTES 

Let to < fi <- �9 �9 < ti <- �9 �9 lira ti = ~ as i -~ ~ ,  be a given sequence of 
real numbers. Consider the linear impulsive differential equation (LIDE) 
with variable structure and impulses at fixed moments 

dx 
- - = A ( t ) x ,  t # t i  
dt (1) 

x(ti)  = Br  0), i = 1, 2 , . . .  
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where the n x n coefficient matrix A ( t )  is piecewise continuous in the interval 
[to, +az) with points of discontinuity of the first kind at t = ti, i=  1, 2 . . . . .  
and the impulse matrices Bi, i = 1, 2 , . . . ,  are constant. The underlying vector 
space E is R" or C' .  

R e m a r k  I. When the coefficient matrix A ( t )  is continuous on the inter- 
val [to, + or), then the LIDE (1) just has an impulse effect but not a variable 
structure. 

The solutions x ( t )  defined in the interval Irk, +oo) are continuously 
differentiable for t ~ ti with points of discontinuity of the first kind at t = t;, 
i > k .  Note that x ( t i ) : = x ( t i + O ) ,  i =  1, 2 , . . . .  

The fundamental matrix X ( t , s )  of the LIDE (1) for t>_s, 
t ~ [t,~, tm + 1 - 0], s E [t j-  7, t j -  0], m > j -  1, admits the representation 

X ( t ,  s) = U ( t ) U - ~ ( t m ) B m U ( t m - O )  . . �9 U - ' ( t j ) B j U ( t j - O ) U - ~ ( s )  (2) 

where U(t)  is the fundamental matrix of the equation d x / d t = A ( t ) x .  The 
fundamental matrix X ( t ,  s) is invertible if and only if the impulse matrices 
Bi,  j<_ i<_m, are nonsingular. 

3. MAIN RESULTS 

Denote by Lk, k = 0, 1, 2 , . . . ,  the linear space of solutions x ( t )  of the 
LIDE (1) defined in the interval [tk, +oo). Let e j = c o l ( 8 { , . . . ,  ~Jn), where 
5J, i=0 for i ~ j ;  i _  8,--1 is Kronecker's symbol; and col(. �9 .) stands for a col- 
umn vector. The solutions x j ( t )  = X ( t ,  tk + O)ej, j = 1, 2 . . . . .  n, are linearly 
independent as elements of the linear space Lk .  Their restrictions to the 
interval [tk+l, + ~ )  as elements of the linear space Lk+a are linearly depend- 
ent if and only if the impulse matrix Bk+ ~ is singular. It is only in this case 
that both the merging of solutions at the point t~ + ~ and the noncontinuability 
to the left of some solutions of Lk+ 1 are observed. Each solution x ( t )  of Lk 
with initial value X(tk) = CO1(~I, � 9  ~,) is a linear combination of the solu- 
tions xj(  t), j = 1, 2 . . . . .  n: 

x (  t) = X (  t, tk)x(  tk) = ~l,x~( t) +" �9 �9 + ;~,x,( t) 

i.e., Lk, k = 0, 1, 2 . . . . .  are n-dimensional linear spaces. 
Due to the presence for linear impulsive differential equations of phe- 

nomena such as merging of the solutions and noncontinuability to the left, 
it is appropriate to introduce new notions for ordinary and exponential 
dichotomies so as to take into account the specific character of this class of 
ordinary differential equations. 
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Definition 1. The LIDE (1) is said to have exponential dichotomies if 
there exist positive constants a,/3, and N and if for any nonnegative integer 
k the following conditions hold: 

D1. The underlying vector space E is split up into a direct sum of ~- 
(or C-) linear subspaces E =  Y~ • Zk. 

D2. All solutions x, y, and z of the LIDE (I) for which x=y+z ,  
y(tk)~ Yk, and z(t~,)eZk satisfy the conditions 

]y(t)l<_Ne-~'-S)lx(s)l for t>>_s>tk 

Iz(t)F<Ne-P~s-~ for s>t>_t~ 

Definition 2. The LIDE (1) is said to have an ordinary dichotomy if 
there exists a positive constant N and if for any nonnegative integer k condi- 
tions (D1) and (D3) hold: 

D3. All solutions x, y, and z of the LIDE (1) for which x=y+z ,  
y(tk)~ Yk, and z(t~)~Zk satisfy the conditions 

ly(t)l<_Nlx(s)l for t>s>t~ 

Iz(t)l<<_Nlx(s)l for s>t>__tk 

Definition 3. The LIDE (1) is said to have a weak exponential dichotomy 
(weak ordinary dichotomy) with respect to the space of solutions Lk if condi- 
tions (D1) and (D2) [(D1) and (D3)] hold only for the solutions of the 
space Lk, where k is a fixed number. 

Remark 2. Condition (D2) can be replaced by the equivalent con- 
dition (D20) : 

D20. All solutions x, y, and z of the LIDE (1) for which x=y+z ,  
y(tk)~ Y~, and z(t~)~Zk satisfy the conditions 

]y(t)l<N1 e-~'-S~ly(s)[ for t>s>t~ 

Iz(t)l<_Nt e-a(s-~ for s>_t>t~ 

]y(t)l<_Nj[x(t)l for t>t~ 

Remark 3. Condition (D2) can be also replaced by the equivalent con- 
dition (D21) : 

D21. There exist projectors Pk (P2=Pk) with ranges R(Pk) = Yk and 
nullspaces Ker P~ = Zk such that 

IX(t, tk)Pjll.<_Ne-~t-~lX(s, tk)OI for t>>_s>tk 

IX(t, tk)(I-P~)rll<_Ne-~s-~ tk)r/I for s>_t>>_tk 

where q is an arbitrary vector. 
Note that X(tk, tk) = I (the unit matrix). 
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Remark 4. For the projectors Pk and Pro, k > m ,  the equality 
PkX(tk,  tin)=X(tk, t,,)Pm is valid. 

Remark 5. Analogously, condition (D3) of Definition 2 can be replaced 
by the equivalent conditions (D30) or (D31), which are obtained respectively 
from conditions (D20) or (D21) for a = 13 =0. 

Proposition 1. If the LIDE (1) has a weak exponential dichotomy (weak 
ordinary dichotomy) with respect to the space Lk, then: 

1.1. (Coppel, 1978, pp. 16, 17). For any projector P with range R(P) = 
Yk there exists a constant N =  N(P) such that condition (D21) [(D31)] hold. 

1.2. For any subspace Z supplementary to Yk there exists a constant 
N =  N ( Z )  so that condition (D2) [(D3)] hold. 

Assertion 1.2 follows from assertion 1.1, choosing a projector P for 
which R(P) = Yk and Ker P = Z. 

Proposition 2. If the LIDE (1) has a weak exponential dichotomy with 
respect to the space L~, then the subspace Yk is uniquely determined and 
consists of the initial values y(t~) of all bounded solutions of Lk. 

Proof By Definition 3 for the solution y(t) with initial value y(tk)~ Yk, 
condition (D20) is valid: 

ly(t)l < NI e-a(t-tk)ly( tk)l <_N2 e -at 

where the constant N2 = N1 e~tkly(tk)L, i.e., the solution y(t) with initial value 
y(t~) e Y, exponentially tends to zero as t ~ ~ .  Let z(t) be a solution with 
initial value z(tg)r Yk and let Z be the subspace through z(tk) supplementary 
to Yk. By assertion 1.2 and Remark 2 for the solution z(t), condition (D20) 
is valid: 

Iz(tk)l <_ N1 e -t~(~-'~)lz(s)l 

i.e., Iz(s)l _>N3 e ~, where the constant N3 = N ;  ~ ea'~lz(tk)l. Hence the solution 
z(s) with initial value z(&) (~ Y exponentially tends to infinity as s ~ oo. �9 

Proposition 3 (Coppel, 1978, 2, Pr. 2, p. 17). Let the LIDE (1) have a 
weak ordinary dichotomy with respect to the space Lk and let Y~ be the 
subspace formed by the initial values of all solutions of L~ tending to zero 
as t ~ ~ .  Let Y~ be the subspace formed by the initial values of all bounded 
solutions of L~. Then Y~ ~ Yk c Y~ and any other subspace ~'k for which 
Y~ c Yk c Y~ also induces a weak ordinary dichotomy with respect to Lk. 

Definition 4 (Milev and Bainov, to appear-b). The LIDE (1) is said to 
be weakly uniformly exponentially stable with respect to the space of solutions 
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L~ (k is a fixed number) if there exist positive constants a and N such that 
for any solution x~L~ the following inequality is valid: 

]x(t)[<_Ne-a(t-S)lx(s) [ for t>_s>_tk 

Definition 5 (Milev and Bainov, to appear-a). If the constant a in 
Definition 4 equals zero, then the LIDE (1) is said to be weakly uniformly 
stable with respect to the space Lk. 

Denote by Bk the map 

E--, 

Proposition 4. If the LIDE (1) has a weak exponential dichotomy with 
respect to L~ induced by the subspace Y~, then the subspace 

also induces a weak exponential dichotomy (possibly degenerate) with 
respect to Lk-l: 

(a) If the range R( /~)=  Y~, then the LIDE (1) is weakly uniformly 
exponentially stable with respect to Lk-1 (a degenerate dichotomy). 

(b) If R(Bk)n Y~= {0}, then each solution y~Lk-,  with initial value 
y(tk-1) ~ Yk-1 is identically zero in L~ and each solution z~Lk-~ with initial 
value z(tk- i) r Yk- 1 tends exponentially to infinity (a degenerate dichotomy). 

(c) If R(/~k)~ Yk and R( /~ )~  Yk~{0}, then Y~-l induces a weak 
exponential dichotomy with respect to Lk-1. 

Proof By the lemma of Gronwall-Bellman for any r~, 
rz e [tk- 1, t~ - 0] the following inequality is valid: 

f t~ IU(r~)U-~(r2)I<_exp I-4(0)1 dO=ak 
k - 1  

In the cases (b) and (c) let the space Zk-1 be supplementary to Y~_ ~ 
and in the case (a) Zk-~= ~ and let Z~ be a supplementary subspace to Yk 
which contains the subspace/~k(Z~-1). The LIDE (1) has a weak exponential 
dichotomy with respect to L~ and by assertion 1.2 condition (D20) is valid. 
Consider the solutions x, y, and z for which x=y+z,  y(tk-~)e Yk-l, and 
z(t~-~)eZk-~. Their restrictions to the interval [t~, + ~ )  belong to Lk, 
y(tk)~ Yk, and z(tk)~Z~. Hence 

[y(t)[<_Ne-~(~-S~ly(s)t for t>s>_t~ 

[z(t)l<_Ne-Z3~-'~lz(s)l for s>t>_tk 

Iz(t)l<_N]x(t)l for t>t~ 



358 Milev and Bainov 

I f  tk-  1 <-- S < tk ~ l, then 

[y( t)l <_N e-~(t-tk)ly( tk)l 

= N e -~(t-s) e~(tk-~)lBkU(tk-- O) u - l ( s ) y ( s ) [  

< NtBkla k e~(tk- tk-~) e-~(t-S)iy(s)[ 

I f  &_ ~ < s _< t < tk, then 

[y(t)[ = [U(t) U-2(s)y(s) l  <_ ak e ~(tk-t~-') e-~O-~)ly(s)l 

Hence for any t >__ s >_ tk-  1 the inequali ty 

ly(t)[ <_ NI e-~(t- ' ) ly(s) l  

is valid, where 

NI = max(N,  NlBklak e ~('k- tk-,), ak e ~(tk- tk-0) 

The map/~k:  Z k - I - - * B k ( Z k - l )  is a bijection, since 

Z k - ,  ~ t~k-'(O) c Z k -  1 t~ Yk-1 ~- {0} 

Hence Iz(tk-1)1 -< IB;11 Iz(t~)l. Then,  for  tk- 1 -- t < tk, 

Iz(t)l = I U(t) U-I (&-OZ( tk -1 )1  

<- akJB-~ll IZ( tk)l 

<<_ akl~-~lINlx( tk) l 

= a k l B k ' l ~ B k U ( t k - -  O) U - l ( t ) x ( t ) l  

<_ a~lB'k'[NlBkl [x(t)l 

i.e., [z(t){ ~ Nzlx(t) l ,  where N2 - a~[B~-I[N1Bkl. 
I f  tk-  ~ <_ t < & < S, then 

Iz(t)l <_aklB-~ll Iz( tk)[ 

<-- a~lB-~ 1 IN e -"(~-'k) lz(s)[ 

<__ ak lBZl lN e-ar o e 13(tk- t)lz(s)l 

<_ aklBk~lN e a(,k-,k-,) e-a(~- ')lz(s)l 

I f  tk- 1 -< t _< s < &, then 

Iz(t)l - [U(t) U -I (s)z(s)[ < ak e a"~- '~- o e-lS(~-Olz(s)[ 

Hence for any s >_ t >_ tk-  ~ the inequality 

[z(t)l <_N3 e-a(~-t)lz(s)[ 
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is valid, where 

N3 =max(N, akIBklIN e 13(tk-tk-l), ak e l~(tk-tk-l)) 

Choosing N=  max(N~, NE, N3), we obtain Proposition 4. [] 
For a = fl = 0 we obtain the following assertion. 

Proposition 5. Let the LIDE (1) have a weak ordinary dichotomy with 
respect to Lk and let YS, and Y~ be the subspaces defined in the condition 
of Proposition 3. 

(a) If R(/~k)c Y~, then the LIDE (1) is weakly uniformly stable with 
respect to Lk-1.  

(b) If R(/~)c~ Y~= {0}, then each solution yeL~_~ with initial value 
y(tk_~)eB-~(Y'[) is identically zero in L~ and each solution zeL~_lwith 
initial value z(t~_ ~)r tends to infinity. 

(c) If R(/~k) r Y~ and R(/~k) n Y~ # {0}, then/?;-~(Y~) induces a weak 
ordinary dichotomy with respect to Lk- ~ and if R(/~k) c~ Y; # {0} as well, 
then each subspace Yk-~ for which / ~ ( Y ; )  c Y~-I c / ~ ( Y ~ )  induces a 
weak ordinary dichotomy with respect to Lk-~. 

Corollary 1. Let the impulse matrix B~ of the LIDE (1) be nondegener- 
ate. If the equation has a weak exponential dichotomy or a weak ordinary 
dichotomy with respect to the space Lk, then it has a weak exponential 
dichotomy or respectively weak ordinary dichotomy (nondegenerate) with 
respect to the space Lk-1 as well. 

Proposition 6. Let the LIDE (1) have a weak exponential dichotomy 
(weak ordinary dichotomy) with respect to the space Lk-~ and let the im- 
pulse matrix Bk be nonsingular. Then the equation has a weak exponential. 
dichotomy (weak ordinary dichotomy) with respect to the space Lk as well. 

Proof The assertion follows from the fact that each solution of Lk 
is a restriction of a solution of L~_~, since the impulse matrix Bg is 
nonsingular. [] 

Proposition 7. Let the impulse matrices B;, i= 1, 2 . . . . .  of the LIDE 
(1) be nonsingular. If the equation has a weak exponential dichotomy (weak 
ordinary dichotomy) with respect to some fixed space Lk, then the equation 
has an exponential dichotomy (ordinary dichotomy), too. 

Proof: Proposition 7 follows from Corollary 1 and Proposition 6. [] 

Remark 6. When the impulse matrix Bk is singular, then it is possible 
for the LIDE (1) to have a weak exponential dichotomy (weak ordinary 
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dichotomy) with respect to the space Lk- 1 and to have no weak exponential 
dichotomy (weak ordinary dichotomy) with respect to the space Lk. We 
shall illustrate this by the following example. 

Example 1. Consider the LIDE (1), where the impulses are at the 
moments t,-= i, i = 0, 1, 2 , . . . ,  and the coefficient and impulse matrices are 

(i 1~ f (i ~176 0 0 Bi = B for i=1 0 0 
A(t)= 0 -1  I for i>2  B=  0 1 

0 0 0 0 

A straightforward verification yields that the equation has a weak exponen- 
tial dichotomy with respect to the space Lo, since the impulse at the moment 
t~ = 1 crumples the "inconvenient" solutions. The equation has neither a 
weak exponential dichotomy nor a weak ordinary dichotomy with respect 
to the spaces Li, i> 1, since there the problem coincides with the classical 
one and the eigenvalues of the matrix A(t) with zero real part are not 
semisimple. 

Remark 7. If in Example 1 we define the impulse matrices by the 
equality 

B for i= j  2 
Bi = 

I for i ~ j  2, j = l , 2  . . . .  

then a straightforward verification yields that the new equation will have a 
weak exponential dichotomy with respect to each of the spaces Lk but will 
have neither an exponential dichotomy nor an ordinary dichotomy. But if 
in Example 1 we define the impulse matrices by the equality 

B for i=10j 
Bi= for ir j = l , 2  . . . .  

then the new equation will have an exponential dichotomy with constants 
a = f l = l  a n d N = e x p l 3 .  
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